九游会J9·(china)官方网站-真人游戏第一品牌
生物tvt体育技术十篇

  tvt体育落叶松cDNA扩增因素优化组合的研究 周怀军,张洪武,安连荣,刘敏丽,杨丽,张晓曼,左永忠

  血小板第四因子在原核中的高效表达、分离纯化及活性测定 顾洁,刘拥军,卢士红,蔡英林,刁世勇,韩忠朝

  蚯蚓提取物对小鼠肿瘤动物模型的研究 胡云龙,徐梅,张双全,黄文华,亢寿海,王俏先

  云南红豆杉(Taxus Yunnanensis)皮下真菌类群初步研究 坚,张灼,王艳,苏源,张睿

  光敏生物素和DIG标记Orf病毒DNA探针的研究 王廷璞,赵菲佚,孙春香,党岩

  蛋白质芯片的制备及其在检测乙肝病毒中的应用 董亚芳,应贝丽,崔振玲,吴自荣

  静息细胞法对根霉12#产抗生物质机理的研究 苏俊,张国政,路福平,杜连祥

  小球藻对水溶液中Zn2+、Cd2+的吸附 李英敏,杨海波,吕福荣,张欣华,刘艳,于媛

  猪肌生成抑制素基因编码序列的分析 孙博兴,侯万文,欧阳红生,李慎涛,郭淑艳

  小鼠IL-18基因的克隆及真核表达载体的构建 张浩,毛秉智,董波,陈肖华,张军权,郭德煌

  人端粒酶RNA基因的克隆与鉴定 马永红,马永红,张玉静,叶志远,阮承迈,陈守义tvt体育,吴东林,

  酵母SH2产胞外糖蛋白对小鼠免疫功能的影响 程志,王淑君,孙国萍,任永春,郭薇薇

  雅致枝霉高产γ-亚麻酸突变株的选育 张玲,李植峰,赖炳森,沈晓京,谭亚芳,孙树秦

  利用RAPD标记鉴定甜菜无融合生殖的同一性 康传红tvt体育,韩晓云,王志伟,郭德栋,王桂芝

  鼠透明带3(ZP3)融合蛋白表达以及抗血清制备 张富春,钱东,林仁勇,马纪,马正海,钟哲

  地衣芽孢杆菌感受态细胞的形成及高效电转化 唐雪明,邵蔚蓝,王正祥,方惠英,诸葛健

  猪传染性胃肠炎病毒重组核衣壳(N)蛋白的纯化 高继国,唐丽杰,姜骞,李一经

  芽孢杆菌DY-32对原油的降粘作用 张惠殊,李清心,康从宝,窦春梅,林建强,王浩

  重组CHO乙肝疫苗细胞培养收换液工艺改进 金立杰,孙俊业,刘延明,隋杰,李忠杰,朱秀香

  医药生物技术是生物技术首先取得突破,实现产业化的技术领域。在现代医药生物技术中,当前最活跃、应用最广泛的为基因工程技术和细胞工程技术,人们利用基因改造后的生物体可以制备大量的新的基因工程药物(所谓基因工程药物就是先确定对某种疾病有预防和治疗作用的蛋白质,然后将控制该蛋白质合成过程的基因取出来,经过一系列基因操作,最后将该基因放入可以大量生产的受体细胞中去,这些受体细胞包括细菌、酵母菌、动物或动物细胞、植物或植物细胞,在受体细胞不断繁殖过程中,大规模生产具有预防和治疗这些疾病的蛋白质,即基因疫苗或药物),进而生产各种导向药物,各种特异性的免疫诊断试剂、核酸检测试剂、生物芯片等。基因工程药物已经走进人们的生活,利用基因治愈更多的疾病不再是一个奢望。

  1、生物技术药品的生产。基因工程药品的生产,包括干扰素、白细胞介素、红细胞生成素、血小板生成素四个药品以及基因工程。利用基因工程、酶工程、发酵工程和蛋白质工程对传统医药产业进行技术改造,成为现代生物技术制药产业的包括维生素c、激素类药品和抗生素的生产以及氨基酸生产等。利用现代生物技术的提取、分离、纯化等下游技术使生化制剂升级换代。其中,乙肝疫苗形成了基因工程产品体系。它是基因工程药物对人类的贡献典例之一,以下将以此为例说明基因工程药物的应用:像其他蛋白质一样,乙肝表面抗原(HBSAg)的产生也受DNA调控。利用基因剪切技术,用一种“基因剪刀”将调控HBSAg的那段DNA剪裁下来,装到一个表达载体中,再把这种表达载体转移到受体细胞内,如大肠杆菌或酵母菌等;最后再通过这些大肠杆菌或酵母菌的快速繁殖,生产出大量我们所需要的HBSAg(乙肝疫苗)。过去,乙肝疫苗的来源,主要是从HBV携带者的血液中分离出来的HBSAg,这种血液是不安全的,可能混有其他病原体[其他型的肝炎病毒,特别是艾滋病病毒(HIV)的污染。此外,血液来源也是极有限的,使乙肝疫苗的供应犹如杯水车薪,远不能满足全国的需要。基因工程疫苗解决了这一难题。而且基因工程乙肝疫苗(酵母重组)与血源乙肝疫苗可互换使用。据临床报道,基因工程乙肝疫苗(酵母重组)能够成功地加强由血源乙肝疫苗激发的免疫反应,对一个曾经接受过血源乙肝疫苗的人,完全可以换用基因工程乙肝疫苗(酵母重组)来加强免疫。临床研究表明,人体对基因工程乙肝疫苗(酵母重组)有很好的耐受性,无严重副反应出现,表明基因工程乙肝疫苗(酵母重组)是非常安全的,在我国基因工程乙肝疫苗已使用1500万人份以上,如此大规模接种,尚未出现严重副反应报道。正是基于1996年我国已有能力生产大量的基因工程乙肝疫苗,我国才有信心遏制这一威胁人类健康最严重、流行最广泛的病种。大量临床资料表明:它是一种安全有效的制品,它的抗体阳转率在95%以上,母婴阻断率在85%以上,它能降低乙肝感染率、携带率,成为控制乙肝的一种重要手段。基因工程乙肝疫苗(酵母重组)因是一个新产品,有关免疫持久性试验仍在进行之中,从所观察5年资料看,可以保护5年,是否能保护更长时间仍需实验证实。科学研究表明:基因工程乙肝疫苗(酵母重组)可刺激人体产生免疫记忆反应,因此,长期受益是可能的。2、医药生物技术的带动作用。随着现代生物技术的应用,必然引起一些产业的发展。例如,随着医疗诊断水平的提高,酶诊断试剂和免疫诊断试剂的生产必然达到更高水平;海洋药物和中药的开发应用技术也会有所改进;保健品的生产也已显出强劲的势头。3、展望。人类基因组测序工作的完成,人们期待已久的人类基因密码的破译,会使我们对人的健康与疾病起因有更深入的认识,随之而来的将是更多的新防治药物的产生和新疗法的问世,为基因工程制药产业带来新的发展契机。然而,第一张人类基因组测序工作草图尚未弄清所有人类基因的功能,一旦人的基因产物(即活性蛋白质)被表达出来,将会有几千种具有特殊疗效的现代药物诞生。我们乐观地期待着这场新药革命的来临。

  食品生物技术就是通过生物技术手段,用生物程序、生产细胞或其代谢物质来制造食品,改进传统生产过程,以提高人类生活质的科学技术。生物技术在食品工业中的应用首先是在基因工程领域,即以DNA重组技术或克隆技术为手段,实现动物、植物、微生物等的基因转移或DNA重组,以改良食品原料或食品微生物。如利用基因工程改良食品加工的原料、改良微生物的菌种性能、生产酶制剂、生产保健食品的有效成分等。其次是在细胞工程的应用,即以细胞生物学的方法,按照人们预定的设计,有计划地改造遗传物质和细胞培养技术,包括细胞融合技术及动、植物大量控制性培养技术,以生产各种保健食品的有效成分、新型食品和食品添加剂。再次是在酶工程的应用。酶是活细胞产生的具有高度催化活性和高度专一性的生物催化剂,可应用于食品生产过程中物质的转化。继淀粉水解酶的品种配套和应用开拓取得显著成效以来,纤维素酶在果汁生产、果蔬生产、速溶茶生产、酱油酿造、制酒等食品工业中应用广泛。最后是在发酵工程的应用,即采用现酵设备,使经优选的细胞或经现代技术改造的菌株进行放大培养和控制性发酵,获得工业化生产预定的食品或食品的功能成分。还有一些功能性食品如高钙奶、蜂产品、螺旋藻、鱼油、多糖、大豆异黄酮、辅酶Q10等。

  作为一项极富潜力和发展空间的新兴技术,生物技术在食品工业中的发展将会呈现出以下趋势:

  1、大力开发食品添加剂新品种。目前,国际上对食品添加剂品质要求是:使食品更加天然、新鲜;追求食品的低脂肪、低胆固醇、低热量;增强食品贮藏过程中品质的稳定性;不用或少用化学合成的添加剂。因此,今后要从两个方面加大开发的力度,一是用生物法代替化学合成的食品添加剂,迫切需要开发的有保鲜剂、香精香料、防腐剂、天然色素等;二是要大力开发功能性食品添加剂,如具有免疫调节、延缓衰老、抗疲劳、耐缺氧、抗辐射、调节血脂、调整肠胃功能性组分。2、发展微生物保健食品微生物食品有着悠久的历史,酱油、食醋tvt体育、饮料酒、蘑菇都等属于这个领域,它们与双歧杆菌饮料、酵母片剂、乳制品等微生物医疗保健品一样,有着巨大的发展潜力。微生物生产食品有着独有的特点,繁殖过程快,在一定的设备条件下可以大规模生产;要求的营养物质简单;食用菌的投入与产出比高出其它经济作物;易于实现产业化;可采用固体培养,也可实行液体培养,还可混菌培养;得到的菌体既可研制成产品,还可提取有效成分,用途极其广泛。3、转基因生物技术为农业、医学及食品等行业的腾飞注入了新的动力,直接加快了农业新品种的培育改良、各种疾病的防治、食品营养改善和生态环境管理。转基因技术的开发可以加速农业、林业和渔业的发展,提高农作物产量,进而通过未来基因食品解决发展中国家人民的饥饿以及营养不良等问题。现时最普遍的转基因食品是大豆及玉米,占总数量的八成。加上棉花、油菜加在一起达到99%,还有番茄,如抗黄瓜花叶病毒的番茄和一种晚熟的番茄;还有也是抗黄瓜花叶病毒矮牵牛的甜椒;另外,也有一些兽用的饲料添加剂和微生物的农用产品。其中食用油是其中比较大的一块。食用油业内人士指出,目前食用油中约有80%~90%为转基因食品,这是由于目前市场上占主导地位的调和油、大豆色拉油,大部分是采用含转基因的原材料制成的。消费者要在超市里买到一瓶非转基因大豆油并不容易。因为目前的大豆色拉油、调和油其主要原料都是进口转基因大豆。由于目前市场上还没有转基因的有花生、橄榄及葵花子,因此所有花生油、橄榄油及葵花子油都属于非转基因食品。一些产品,也可能与转基因有关,如饼干、即溶饮品及冲调食品,饮料和奶制品,啤酒,婴儿食品及奶粉,膨化食品与零食,糖果、果冻和巧克力、雪糕等。

  食品生物技术如同一把双刃剑,有利也有弊。转基因食品是不是有利,取决于转什么基因,或者基因转到什么食品里。因此,政府应该采取积极措施,随时公开基因食品的研究成果,以足以博取信任的方式与公众进行沟通。总之,生物技术已深入到食品工业的各个环节,对食品工业的发展发挥越来越重要的作用。随着它的不断发展,必将给人们带来更丰富,更有利于健康,更富有营养的食品,并带动食品工业发生革命性变化。展望21世纪基因食品的发展,未来生物技术不仅有助于实现食品的多样化,而且有助于生产特定的营养保健食品,进而治病健身。

  作者简介:童欣(1987年-),女,汉族,广东乐昌人,中国药科大学生科院2005级生物技术本科生

  [1]林稚兰.功能性食品的热点与走向.北京大学生命科学学院.2005.05.11

  根据我国农业畜牧业的现有基础以及对动物生物技术的实际需求,国家应该集中各种力量,着重对生物技术开展基础性的研究,加大技术的投资力度,对一些利润高的技术产品进行重点投资,根据我国农业动物生物技术的现有基础和社会发展变化的主要形势,预计农业生物技术将在以下几个领域取得长足发展。

  由于农业养殖日益呈现出规模化与集约化较高的特征,再加上人们对短期经济效益的集中追求,所以我国传统的畜禽品种资源将会遭遇越来越严重的破坏,其群体数量将日益降低,品种资源的破坏形势会日益加深,根据这种现实情况,未来农业动物生物技术将在以下分子生物领域进行发展:对我国固定的优良品种或基因进行挖掘与定位;为畜禽的遗传多样性进行保护的分子监测技术;我国固有畜禽品种的起源与进化的比较基因组学研究;保存动物遗传资源的生物技术研究。

  我国农业中的畜禽育种工作经过长时间的发展,逐渐由追求数量转向追求质量,育种方法也逐渐由数量遗传法转向分子育种与常规育种相结合的方法,所以分子育种技术的改进将是未来阶段我国农业动物生物技术的一个主攻方向,分子育种技术的研究将集中在标记辅助育种技术、数量性状主基因的检测和定位技术、动物功能和抗病基因的诊断技术以及试剂盒的研究,通过这些方面的技术研究提高动物产品的质量,实现其最大效益。

  畜禽疫病是对我国畜牧业生产以及产品安全造成主要影响的关键因素,畜禽疾病的危害严重、流行面广,潜在危险性较大,一旦发生就会造成较大的经济损失,因此,利用免疫学、现代分子生物学以及病毒学的相关技术,对我国畜禽的重要疫病进行分子生物学研究是是农业动物生物技术的主要发展趋势之一,主要包括:重要畜禽疫病的分子诊断、监测、重要畜禽疫病病原的大分子结构与功能研究以及试剂盒的研发。

  4.转基因动物技术转基因动物是一种将胚胎工程与分子生物学有机结合而研究出来的一种基因工程动物,这种技术是克隆技术的突破性进展,影响动物发育过程中的基因表达,能够促进遗传学与发育生物学以及相关学科的发展,是加快动物育种进程、提高育种效率,为濒危动物提供生存方式的有效方法。

  生物技术是现代生物学发展及其与相关学科交叉融合的产物,是当今科技最令人瞩目的高新技术之一,其核心是以DNA重组技术为中心的基因工程。它涉及到对生物的遗传基因进行改造或重组,并使重组基因在细胞内表达,产生人类需要的新物质的基因技术(如“克隆技术”);从简单普通的原料出发,设计最佳路线,选择适当的酶,合成所需功能产品的生物分子工程技术:利用生物细胞大量加工、制造产品的生物生产技术(如发酵);将生物分子与电子、光学或机械系统连接起来,并把生物分子捕获的信息放大、传递,转换成为光。电或机械信息的生物耦合技术;在纳米(即百万分之一毫米)尺度上研究生物大分子精细结构及其与功能的关系。并对其结构进行改造利用它们组装分子设备的纳米生物技术:模拟生物或生物系统。组织、器官功能结构的仿生技术等。

  现代生物技术的深入发展和广泛应用,是继计算机技术革命之后又一次重要的技术革命,将为改变人类生活起着不可估量作用。

  项目简介:该项目主要研究目的是通过利用生物技术培育草莓新品种,解决黑龙江省草莓品种单一及品种退化问题。并探讨花药组培单倍体,选育草莓新品种的育种途径。经过五年研究攻关,已培育出草莓新品系S4-94-1,经省科技厅结题验收。

  该品系主要特点:平均单果重14.5g,最大单果重30g,果形倒园台形,果实大小一致性强,果实硬度中等,糖度9.5%,有机酸含量0.9%,百克Vc含量120毫克(mg),品质好。产量比主栽对照品种“戈雷拉”、“维斯它尔”增产19.4%、18.9%。较抗灰霉病和黄萎病,适于黑龙江省及吉林、辽宁地区保护地及露地种植。

  项目简介:该项目以实用生物技术提高黄牛的率、受配率、受胎率和双犊率。结合胚胎移植和A1+ET技术,使黄牛双犊率有较大提高。此项目在长春地区应用生物激素处理黄牛510头,总受胎率达89%,产双犊率14.5%;人工授精和胚胎移植结合处理黄牛50头,产双犊率30%;利用胚胎移植两枚胚胎:鲜胚和冷冻胚胎共处理99头,双犊率分别为28%和平共处22%。结果显示比自然繁殖提高双犊率13.62%、29%、27%和21%。项目应用诱导母牛超数排卵,采用以黄牛为受体的胚胎移植,配合冷冻人工授精等配套技术,提高母牛繁殖力,达到一胎双犊目的。

  项目简介:该产品是香味浓厚、肉味突出的畜禽骨超微粉,且所含钙和氨基酸等营养成份更利于被人体吸收,主要作为补钙营养品和食品营养添加原料。

  该产品完整保留骨类的营养成份,钙等微量元素和氨基酸更利于被人体吸收。钙≥30mg/100g、蛋白质≥35g/100g。该技术为国内首家采用酶解、微粉化、美拉德反应、微胶囊技术、弥补了不经生物处理的香味不足缺点,使营养成份利于保留并更易被人体吸收。该技术属高新生物的应用范畴,是应用生物技术对畜禽骨进行高附加值转化。

  项目简介:该研究利用生物转化技术对我国资源丰富,价格低廉的植物总皂苷进行转化,制备抗肿瘤活性皂苷20(S)原人参二醇20-O-β-D-吡喃葡萄糖苷(人参皂苷Compound K 简称C-K);筛选出最佳的转化工业酶制剂与微生物菌株,优化了生物转化的制备工艺;进行了抗肿瘤有效成分生物转化机制及其抗肿瘤作用的研究;采用现代层析技术系统地分离纯化、鉴定稀有抗肿瘤皂苷和生物转化后的产物等。

  意义:该课题为C-K的工业化生产提供了一种新途径,也为研发高效、低毒、质量可控的天然抗癌创新药物奠定了基础。其研究成果是对国内外40余年来对人参属植物进行化学成分和从人参属植物中寻找新的有效物质及其制备方法的重大突破。

  项目简介:该项目以制革工业为主线、以提高皮革质量、消除制革污染为目标,运用基因工程、亲和层析法以及酶的化学修饰等科学方法筛选和优化功能决定酶。在一定条件下,以功能决定酶为主体,与其它酶制剂或多元无机物复配,制备出适合各种用途(如浸灰、复灰、脱毛、局部涂酶、软化、蓝革软化)的制革高效专用酶制剂。创新设计出了多种无毒、无害无机物构成的复合增效系统,研究开发出了一种以活性橙标记酸松弛胶原为底物的胶原水解酶活力分析方法。应用该项目成果中的基于酶制剂的生物制革技术,可以促进制革工业的产业升级,促进整个制革工业的科技进步,提高产品质量消除制革污染。

  项目简介:该课题以具有重要经济意义又缺乏野生资源的穿龙薯蓣为研究对象,利用生物技术,组织培养技术,从体外快速繁育体系的建立、再生植株遗传的稳定性、再生植株的有效成分分析进行了研究。通过生物技术培育薯蓣再生植株不仅具有繁殖率高,还具有遗传稳定性好的优点。产业化应用后可以成为解决栽培薯蓣的种质资源不足的途径之一。

  项目简介:该成果以我国常用重要中药黄芪为对象,应用生物技术和多学科交叉,进行了深入和系统的探索,取得了一系列重要的研究成果,整体水平达到国际先进,其中有些成果属国际首创。该成果以发根农杆菌(Agrobacterium rhizogenes)诱导膜荚黄芪无菌苗形成黄芪毛状根。首次成功建立了30升培养规模的黄芪毛状根培养体系,并进行了培养条件的优化研究。首次利用基因工程技术对膜荚黄芪进行定向改良,提高了活性成分的含量。

  意义:该成果的建立和应用,将为中药资源的可持续发展提供了技术平台,促进了中药现代化的进程。该成果待条件成熟后可进行工业化生产,对建立中药材高技术产业而言,前景广阔。

  项目简介:该项目采用了啤酒酵母菌种单细胞分离、筛选技术、微生物紫外线诱变技术等,改变了酵母菌种DNA结构,并进行了啤酒酵母综合性能鉴定。选育出的酵母菌株完善了啤酒的风味,使其口味更加协调,高级醇含量降低了20ppm,而且酵母的凝聚性适中,解决了凝聚性差,啤酒过滤困难的问题。产品的酒龄由25天缩短至16-18天,提高了设备利用率,增大了产量。

  项目简介:该研究遵循原子利用率有效值最大化原则,利用自行研制或开发的高效催化剂和反应助剂,分别采用固定床催化和釜式催化生产技术,使用10套生产设备和9种催化剂和反应助剂,完成了25种包括腈类、酮类、酚类、酸类、醛类、酯类等重要的农药、医药中间体从实验室合成、中试到工业生产的工艺技术研究与实施。该项目技术应用于精细有机化学品合成领域。

  项目简介:该项目通过对热可平注射液、鱼腥草注射液的提取工艺采用超临界CO_2萃取技术进行提取,并对超临界CO_2萃取工艺进行优化研究,用超临界CO_2萃取物制成热可平注射液、鱼腥草注射液,对用超临界CO_2萃取技术和水蒸气蒸馏制成的热可平注射液、鱼腥草注射液进行相关的化学成分分析、药剂学、药理学研究、毒理、稳定性实验研究,质量标准研究,以提高该类药品的临床疗效,通过对热可平注射液、鱼腥草注射液的示范研究,为该技术在医药工业中的应用提供依据tvt体育。采用新工艺超临界CO_2萃取缩短提取时间,提高产品疗效和产品质量标准,节约能源和资源,生产后经济效益和社会效益显著。

  项目简介:L-亮氨酸是常见18种氨基酸中的一种,在医药、食品、饲料、化妆品等行业具有重要的用途。目前国内外L-亮氨酸生产方法以蛋白水解提取法为主,由于天然蛋白质原料氨基酸组成复杂,提取工艺复杂,污染严重,收率较低,而且由于疯牛病等动物疾病的存在,西方国家已禁止采用动物蛋白水解提取法生成氨基酸。

  在我们生活的各个方面都会涉及到生物技术,可见,生物技术的应用范围非常广,无论是食品加工,还是农业生产,都大量应用了生物技术。随着生物技术的不断发展,公众越来越认可生物技术。我们从生物技术的概念、应用领域和发展困境等几个方面对生物技术的发展前景进行展望。1.1生物技术的概念界定。生物技术是一种高新技术,随着生物技术的不断发展,人们对于生物技术的认可度越来越高,而且,在很多行业中,人们越来越重视生物技术的应用,因为在企业的发展过程中,生物技术为企业的发展创造了更多的机会和可能性。生物技术的应用实质就是对生命体进行加工,使生命体的价值能够充分地发挥出来。生物技术不仅仅是研究性的学科,更重要的它是一门实践性的学科。

  生物技术的应用范围非常广泛,像农业生产、食品安全等方面,都大量的应用了生物技术,从这里我们就可以看出生物技术有一个非常广泛的应用前景。生物技术应用在农业生产中,可以使农作物产量提高,而且,利用生物技术可以开发出新的品种,使农业技术更上一层楼,使资源得到充分的利用。在食品行业中应用生物技术,可以解决食品的保鲜问题。在医疗卫生方面应用生物技术,可以开发出新的药材,治疗更多的疾病,为医学带来新的发展空间。生物技术应用在环保方面,可以合理地分配和利用资源,减少我们生活中的污染。

  确实,生物技术的发展为我们的生活带来了很多的改善,然而,在生物技术的发展过程中却并不是一帆风顺的,需要跨越千难万险。发展生物技术确实为我们的生活带来了很多的方便,与此同时,它也给我们增加了风险因素。公众是否信赖生物技术的发展,主要依据就是这项技术在未来的发展过程中拥有多大的空间。所以,我们必须建立生物技术发展风险评估制度,以便让人们在应用生物技术的时候获得最大的利益,造成最小的风险。

  生物技术具有非常广泛的发展前景,如果想要使生物技术具有更加广阔的发展空间,我们就必须不断创新技术,发展机制,寻找更多的产业合作等。

  生物技术的发展潜能非常大,特别是在技术创新和技术研发方面具有非常大的潜能。我们发展生物技术的前提就是人们的基本生活,生物技术的发展就是为了更好地解决人们在生活中遇到的各种问题,满足人们更多的需求。无论哪个国家,发展生物技术都是具有自己的民族特色的,所以,在面对生物技术的技术研发和创新的问题时,我们就要立足于我国的基本国情,清楚地了解我们国家的需求。除此之外,还要积极地吸收和借鉴国外的先进的科学技术,注重培养人才,开展经验交流会。在面对创新的问题上,我们必须要有自己的立场和原则,按部就班地实行我们的计划,这是一个长期的发展过程,不是一蹴而就的事情,所以要按照规律踏踏实实地实现生物技术的技术创新。

  生物技术的评估机制包括很多方面,像把握市场的发展动向,分析生物技术的应用前景,调查社会对于生物技术的认可度。在建立和逐渐完善评估机制的过程中,不仅需要企业的参与,还需要政府的参与。首先,政府应该提供资金的支持和援助,其次,不断完善法律制度,可以有法可依,对生物技术的发展做出整体的规划,促进生物技术健康有序地发展,使企业获得最大的利益。再次,市场的感知能力要提升,应该深刻认识到生物技术为我们带来的风险和带给我们的经济利益。发展生物技术是具有一定的风险的。如果我们为生物技术的发展投入了大量的人力、物力、财力,最后却造成非常大的风险,那么公众对于生物技术的认可度就会大大降低。因此,我们必须完善生物技术风险评估制度,促进生物技术不断向前发展。

  近20年来,我国生物技术取得了长足的发展,培养了一支约2万人的从事生物技术研究、开发、生产和管理的科技队伍,其中有一批留学海外学成回国的中青年生物技术专家;建立了相当数量的研究开发机构及产业化基地;初步形成了医药生物技术、农业生物技术、轻化工生物技术、海洋生物技术等门类齐全的生物技术研究、开发、生产的体系。作出了一批具有较高水平的生物技术研究开发成果,开发出一批生物技术产品并投放市场。继1996~1997年第一个基因工程产品上市的高潮之后,预计在2003~2005年我国将出现生物技术产品上市的第二个高潮。由此可见,与其它高技术领域相比,我国的生物技术总体水平及产业化程度与国际先进水平的差距明显缩小。在我国重要的高技术领域中,从目前基础条件、资源优势和发展态势来看,生物技术最有希望取得创新性进展,最具参与国际市场竞争的潜力。因此,建议国家将发展生物技术及其产业作为21世纪加速发展我国高技术产业、提高国际竞争能力的“突破口”。把握有利时机,进一步把发展生物技术及其产业放在突出的战略地位,力争在21世纪的前10年内使我国生物技术及产业跻身于世界先进行列。

  我国的生物技术及产业发展应改变以往跟踪为主的战略,实施积极创新为主集成应用的战略方针。基于目前我国生物技术及产业发展的实际状况、水平和能力,在未来10~15年内,我国宜采取“立足创新、集成应用、需求导向、重点突破”的发展战略。

  关于集成应用,主要是指把现有的已成熟的先进技术(不管这些技术源自何处)组合集成起来运用于生物技术的研究开发和产品生产。充分借助和合理利用现代科学技术所取得的成就,对于我国生物技术产业以及其他高技术产业的发展都十分重要。

  21世纪初我国生物技术及产业的发展目标应定位在:努力提高生物技术在我国国民经济和社会发展中的贡献率,增强我国生物技术的创新能力和国际竞争能力;争取在21世纪初的10年内,使我国生物技术的整体水平跻身于世界先进行列,生物技术新兴产业发展成为我国的支柱产业之一。

  我们认为,在未来10~15年内,我国的生物技术及产业发展宜采取“政府引导,企业为主,官、产、学、研、资相结合”的发展模式。

  众所周知,产、学、研的结合是促进科技进步,加速科技长入经济,提高研究开发效率的良好方式。结合现阶段我国实际情况,为保障生物技术及产业得以迅速发展,政府的作用十分重要。政府应该对全局研究开发及产业化的发展方向、目标、策略和措施进行系统的规划和设计,对各类各层次不同机构的研究开发工作给予重要的引导;对于一些重要的领域,国家应给予一定的资金支持,可以更加有效地引导企业界、金融界以及地方政府的资金和支持,各方面力量形成的合力将加速国家目标的实现。

  高技术是基于多种学科的综合技术,而高技术产业则必须加上科学的经营管理和营销策略。发展高技术产业只有以企业为主,才能有效地将分离的科学与技术、科技与产业、产品与市场紧密地有机地联系在一起。同时生物技术产业的发展需要技术资本和金融资本的联合运作。没有一个良好的资本市场,生物技术产业将难以迅速发展。

  总体而言,我国目前尚没有全国性统管生物技术研究开发及产业化的组织管理机构,缺乏全局性的战略部署。目前国家各类科研计划虽然都在不同程度上注重基础性创新性研究,但在具体实施和操作过程中,往往倾向于选择短期能产生效益的研究项目,导致创新的源头匮乏。更为严重的是,各类计划之间缺乏必要的沟通与协调,各部门、地方自成一体、封闭运行,导致科研力量分散,形不成合力,而且造成低水平重复。

  现阶段我国正处在从计划经济向市场经济过渡的转轨期。发展我国的生物技术及其产业,必须结合我国具体国情,同时运用计划和市场两种资源配置的调节手段,采取“两弹一星”+利益捆绑的新机制,盘活我国技术、设备与设施、人才等方面的存量,使各方面的优势系统有效地集成;必须同时调动国家、地方和企业以及科技人员的内动力和凝聚力;必须下决心解决部门地方条块分割、低水平重复的顽症。为此,建议国家适时成立全国性的组织管理机构,对全国生物技术及产业发展进行总体规划和协调指导tvt体育,从而做到整体协调,避免多头指挥和政出多门,实现决策、协调和实施系统的统一、简便和高效。

  国外生物技术及其产业发展的经验表明,在一些地理、交通、信息、政策等环境较好的地域,容易形成生物技术研究开发和产业的“聚集区”。这种“聚集”促进了不同研究开发领域的交流与合作,不仅加速了生物技术研发及产业的发展,同时通过“聚集”进一步吸引人才、技术和资金,起到了“聚集”带动“聚集”的作用,形成了良性发展的循环。根据目前我国生物技术及产业发展情况,结合现有部级高技术产业开发区,可选择技术力量比较雄厚、投资环境好并已有一定生物技术产业基础的上海、北京、广东(深圳)、长春等地作为生物技术产业化基地,给予更为优惠的财政和税收扶持政策。集中力量有选择地发展3~5个生物技术产业聚集区(如以北京为中心的京津冀聚集区、以上海为中心的江浙沪聚集区、以深圳为中心的粤港聚集区、以长春为中心的长沈大聚集区等),发挥生物技术产业发展的聚集效应,尽快形成较大的生物技术产业规模。对上述生物技术产业聚集区,国家应积极发挥引导作用,充分调动地方和企业界的积极性,以国家重大项目为纽带,促进优势互补的联合与协作,逐步形成既有合作(包括跨国和跨地区合作)又有竞争的社会化的生物技术研发与生产的格局。

  对于某些我国有较好基础、接近或达到国际先进水平或是我国有资源优势的技术领域,例如转基因动物反应器、转基因植物、功能基因组、生物芯片、组织工程、中药等领域,应选择部分重大项目,目标瞄准国际市场,通过运用优势集成、整体设计、分段实施的操作方式,加大协同攻关力度,尽快将一批拥有自主知识产权的生物技术和产品推向国际市场,增强并确立我国生物技术及产业的国际竞争能力和地位。

  我国科技成果转化难、转化率约了高科技产业的发展,影响了科技作为第一生产力作用的发挥,已成为普遍关注的问题。生物技术因其自身的综合性、多学科特点,生物技术转化更具有特殊性。在目前我国资本市场尚不完善的条件下,孵化器的作用尤为重要。孵化器的作用是,通过与研究开发机构建立广泛联系,并有力地引导企业介入,密切生物技术上下游的结合,有效地使单一技术的突破尽快孵化为成熟配套的技术和工艺,向产业进行技术转移和辐射,从而加速具有商业前景的技术和产品尽快形成商品化和产业化。为此,应在已有的工作基础上,择优建立数个生物技术国家重大项目孵化器,结合具有自主知识产权、独特性的生物技术重大项目和重大产业工程的实施,力争在5~10年内开发出一批具有自主知识产权和国际竞争力的重大生物技术产品,同时走出一条生物技术成果转化的成功之路。

  我国在生物技术及产业发展所需的重要仪器、设备、试剂等支撑技术与装备方面十分落后,主要依靠国外进口。在国外,生物技术的支撑技术与装备本身就是一个巨大的产业,其产值占生物技术产业总产值的20%以上。生物技术的支撑技术与装备具有两大特点,一是涉及多学科、多技术领域的交叉;二是绝大多数生产经营专用仪器、装备的公司都拥有国际市场,只有占有国际市场才能在国际竞争中生存和发展。目前我国尚不具备自主研制和生产并占有国际市场的能力。因此,对重要的生物技术仪器、设备和装备,应采取“桑塔纳”模式,走与国外大公司合资合作的发展道路。第一步通过合资合作,引进建设组装线或生产线,这样一方面可以迅速提高技术水平和管理水平,另一方面可以与外国公司共同参与国际竞争;第二步加速引进技术的消化吸收,逐步加大国产化比重,同时加强新型号、新设备的研制开发,进而逐步增强参与国际竞争的能力。在此方面,应注意避免自己闭门造车、封闭发展,所开发的产品性能不稳定,测出的数据不可靠,别人不用,自己也不用的尴尬局面。

  国外成功经验表明,中介组织在高技术产业发展过程中发挥了重要作用,中介组织是创新体系的重要组成部分。我国应大力发展从事生物技术信息咨询、技术评估(包括生物安全评估)、专利(特别是国外专利)、投融资等方面的中介机构。

  我们认为,应尽快组建生物技术产业协会。组建生物技术产业协会有利于信息沟通和协作,有利于规范市场和公平竞争,亦可避免不必要的重复,有利于逐步形成社会化发展的格局。协会组成以企业法人和高级主管为主,吸纳大学和研究机构的技术、管理、营销专家参加。政府主管部门可以通过协会进行全局性组织协调工作。

  我国国土辽阔,特殊的地理、气候、人口、人文、历史以及多民族等原因,使我国具有丰富的动物、植物、微生物及人类遗传资源,包括历史悠久的中医药宝库,为我国在生物技术领域的研究开发提供了得天独厚的有利条件。但从目前情况看,我国在生物资源的保护和利用方面还存在着明显的不足。大量的生物资源没有得到有效的保护和利用,甚至一些重要的资源流失严重。例如,我国虽有丰富的微生物资源,但由于资金和管理上的一些因素,导致研究、保藏和开发工作都处于非常困难的境地,至今没有一个明确的主管部门,也没有一部微生物资源管理的法规。因此,建议国家有关部门象重视人类遗传资源一样高度重视对所有生物资源的保护和利用。一方面应抓紧制定和完善有关各类生物资源管理的法规和规章制度;另一方面应尽快建立健全国家生物资源的保藏及服务体系,其中包括细胞库、菌种库、毒种库、种质库、信息库等。此项工作可在相关计划的基础上,给予专项经费支持。虽然需要花费一定的资金,但这是一项具有战略意义的基础性工作,因此必将起到事半功倍的效果。

  中国改革开放实践证明,不开放就没有出路。高技术需要在合作和竞争中求发展。一方面是在合作中竞争,另一方面又要在竞争中合作。国际上,企业间的联合与建立战略伙伴关系越来越成为一种重要的发展趋势。我国在发展生物技术及产业的过程中,必须加强与国外政府间和民间的合作与交流。此外,还应利用国内巨大市场的吸引力,积极与某些大型跨国公司建立战略伙伴关系,在国内合作建立合资企业,合作开发新产品,合作开拓国际市场。

  发展我国生物技术及产业要充分重视利用海外资源,特别是信息及人才资源。在这方面,即使是十分发达的美国也不例外,十分重视利用国外的信息,并吸引别国的优秀人才为其服务。我国除应采取相关措施积极吸引海外留学生和科学家回国为国效力外,还应选择重大技术领域,在国外建立联合工作站。863计划生物领域在“八五”、“九五”期间已试行,效果良好。实践表明这是实现技术跨越的有效途径。国家应积极引导支持有条件的科研机构和企业,特别是企业在国外建立研究开发机构,这样将会大大提高信息采集、技术引进、智力引进、人才培养和国际合作与交流乃至产品出口的效率。

  基因工程是基于分子遗传学的理论建立的,又叫做DNA重组技术。对于来源不同的基因,基因工程根据预先设计的蓝图,借助于分子及微生物学,按照现代化的方式,实现杂种DNA分子的体外构建,通过活细胞的有效导入,完成生物遗传特性的全新转变,从而达到获得新品种的目的。在现代生物技术发展中,基因工程是关键组成,食品的包装、保藏等多个环节,都可以将该技术应用其中,实现包装材料的改变,达到降低食品生产成本的目的。同时,将基因工程应用于食品贮藏中,既是一种贮运方式的创新,也能获得食物贮藏期的有效延长。以延熟番茄为例,该种食物的生产就应用到了转基因技术,以调控乙烯合成途径这一办法来使乙烯的合成得到有效抑制,达到番茄延迟成熟、贮藏期延长的效果。

  细胞工程中涉及多项生物学理论,既包括现代细胞生物学,也包括发育、遗传学,更对分子生物学方法进行了运用。作为一种生物工程技术,细胞工程基于人们的需求,按照预先的设计,实施细胞层次的遗传操作,对细胞内含物进行重组,对细胞结构进行重组,从而实现生物功能以及生物结构的科学转变。通俗来讲,细胞工程主要是完成新物种的快速繁殖,在实现这一目标的过程中,有效应用了组织培养、细胞培养等生物学办法,引入了基因移植技术、核质移植技术等多项技术。作为一种科学研究办法,生物工程的多个领域都可以看到细胞工程的渗入。在食品工业发展中,细胞工程更是得到了广泛的科学利用。

  在生物技术中,酶工程也是不可缺少的一种技术,主要实现的是物质转化。就酶本身而言,是具有一定催化作用的,在生物反应器内,利用酶的这一作用,就可以实现物质的转化。

  在生物技术组成中,发酵工程同样是不可缺少的。在发酵工程中,借助现代工程技术办法,通过对微生物特定功能的科学利用,实现对某一生产环节的有效控制,或是就此产生一种新的需求物质。

  在肉类食品生产中,通过生物技术的科学应用,既可以施行对肉类食物资源的有效改造,又能够实现对肉类传统加工工艺的创新,从而使肉制品功能得到进一步增加、肉类加工深度得到更大提升,推动肉类生产的产业化发展。

  现阶段,在果蔬保鲜技术中应用较为广泛的就是化学杀菌剂以及冷藏的处理方式了,然而,这样做也存在着很大的弊端。一方面,使用化学杀菌剂,果蔬中的残留会对食用者的健康造成一定威胁;另一方面,化学杀菌剂的长期使用,植物病原菌也会出现抗药性。鉴于此,需要用另一种果蔬保鲜处理方式来取代现在应用较为广泛的化学杀菌剂,而且,新的果蔬保鲜处理还最好是对人体健康没有毒害威胁的,同时又具有高效防腐效用的,生物保鲜技术就能够很好的满足这一要求,国内外都加强了对这一保鲜技术的研究。据相关研究显示,茄子保鲜中应用木霉发酵液能达到极好的保鲜效果。实验发现,在20℃至25℃的贮藏温度范围内,茄子果实如果被木霉发酵液处理,可以保鲜贮藏长达20天。

  在饮品生产中应用生物技术,不仅可以使饮品的风味得到有效改变,也会使饮品品质发生变化,对于产品质量的提升发挥着良好的效果。因此,在饮品产业发展中,生物技术的应用是非常广的。据相关研究发现,在南瓜汁乳酸发酵饮料生产中,以5%的乳酸菌接种量1:1.75的南瓜浆和水配比,分别向里添加7%以及0.05%的蔗糖、蛋白糖,给以40℃以及8小时的发酵条件,由此得到的饮品,不仅可以保持稳定的外观,还有着酸甜适中的独特口感,深受大众欢迎。

  当前,科技术发展日新月异,在食品添加剂生产中,生物技术发挥着无可替代的作用,成为新型生产技术。在各种食品添加剂生产中,如何更好利用生物技术,成为国际研究热点。国内这方面的研究,也取得了一定成绩。比如在牛奶生产中,尤其是在双乙酸奶味香精生产中,可利用双乙酸乳酸乳杆菌进行发酵。向发酵液中,添加一定量的CuS04,可增加双乙酸活性,而添加一定量的0.1%柠檬酸钠,可抑制双乙酸还原酶。因此,制备的奶味香料,具有双乙酸的纯正奶油香味。

  现阶段,在食品工业发展中,食品包装也更多的应用到了生物技术。而且,在包装食品毒理检测以及食品的防腐方面,生物技术应用也取得了效果。

  评价食品品质、开展食品质量监督、实施食品生产监控、加强食品研究等,在食品检验的多个环节,生物技术检测都得到了较好的应用。尤其是在食品卫生检测环节,生物技术的应用为提升食品质量做出了重要贡献。比如,对于蔬菜食品,可以通过免疫分析、活体生物分析等生物技术办法来检测药物残留。同时,在药物残留检测环节,利用生物芯片技术也能获得准确的结论。再如,对于食品中是否含有病毒污染的检测,通过核酸聚合酶连锁反应这一生物技术,可以在短时间内扩增DNA和RN断,从而获得需要的检测数量。除此之外,将基因工程应用于食品检测,通过DNA指纹技术,食品原料是否掺假就可以准确的鉴定出来。而且,通过DNA指纹技术,也能判断出牛奶饮品中是否含有微量毒素。

  在高新技术中,生物技术虽然兴起没有多长时间,但却在社会生产发展的多个领域得到了越来越广泛的应用。对于全球性重点关注的问题,如能源问题、污染问题、粮食问题等,都可以通过生物技术的应用得到科学的解决。可以说,生物技术出现而带来的种种经济、社会效益是无法预估的。而随着生物技术的继续发展,将其运用于食品工业,也必然会出现更加广阔的发展空间。

  农业生物技术的主要研究内容包括:增强农作物以及畜禽鱼的抗性、品质改良、提高产量和生产具有特殊用途的物质等。其中以转基因作物的研究和运用最为重要,发展最快。根据统计资料,到2000年,全世界转基因作物推广面积达4420万公顷,比1996年增长了25倍;种植转基因作物的国家从1996年的6个增加到2000年的13个。这其中美国的转基因作物种植面积最广,达到了3030万公顷,占68%;其次为阿根廷,1000万公顷,占23%;加拿大300万公顷,占7%;我国为50万公顷,占1%。

  ——研究成果商品化产业化进程加速。目前,农业生物技术作为一项高新技术产业在发达国家业已形成,并处于一个高速发展时期。有关专家预测,本世纪生物技术产品在国际贸易中的份额将达到10%以上,而现代农业生物技术又将占相当的比重。世界银行下属机构预测世界范围内转基因作物产业的交易额为2000年20亿美元,2005年60亿美元,2010年200亿美元;国际农业生物技术应用机构(ISAAA)的预测则分别为30亿美元、80亿美元和280亿美元。

  ——研究方式集约化、规模化明显。在政府以及公共机构对现代农业生物技术进行投资研究的同时,众多私有企业也开始注意到这一领域将是继计算机和网络技术之后的又一个潜力巨大的经济增长点,私人公司已逐步成为农业生物技术的研究主体。以美国为例,民营机构1992年对这一领域的投资为5.95亿美元,而1999年则达到15亿美元。与此同时,世界范围内出现了生物技术企业领域的兼并和收购狂潮,并购金额从1997年的12.37亿美元陡然升至1999年的138亿美元。一些资产过百亿美元的巨型跨国公司由此形成,过去分散的研究基地也随之向集中化规模化发展。

  据业内人士分析,促成公司并购的原因,一方面是为合理利用资源、降低生产成本、优化人员组合,而更重要的原因,则是因为现代农业生物技术产业是一个高技术、高投入、高风险、长周期的产业,小公司在资金、技术、以及抗风险能力上均难以独立对农业生物技术产品进行研发和推广。只有强强联手的大型现代农业生物技术企业才能有效占领市场,与其它企业抗衡。

  广义上讲,生物技术是利用有机体、死细胞、活细胞以及细胞内含物,采用特殊的过程生产出特殊的产品应作到农业、医药以及环境修复治理中,尤其是70年代基因工程的出现,它能改变、取代物种的基因。

  生物技术在农作物中已有广泛的应用。最初通过遗传工程获得而进入市场的作物是:玉米、大豆和棉花。它们经转基因后具有抗除草剂和棉铃虫的能力。这种玉米、大豆和棉花从Bt细菌获得基因,经遗传改良后具有防虫害的能力。利用Bt细菌获得经遗传改良的作物的潜力是相当大的。例如:美国有200万hm2的Bt棉花,澳大利亚有40万hm2,两者各相当于2.5亿美元价值。如果将Bt玉米引种在美国1000万hm2的土地上,只要增产5%,就意味着能增加3.5亿美元收入。这项技术进一步促进了Bt制剂控制虫害在商业上的应用。除此之外,还有许多经转入特定基因的玉米品种,这些品种能同时抗除草剂和一些虫害。

  生物技术在畜牧业上应用所获得的益处与在农作物上相似。一方面,生物技术有助于提高畜禽的生命力以及消灭竞争者。促进畜禽生长的物质有生长激素以及促进其生长的调节剂,这些物质可由基因工程而获得。如利用鼠类基因(该基因能促进角蛋白的形成)能获得了经遗传改良的绵羊,这种绵羊比普通棉羊产毛量能提高6%左右。另一方面,生物技术在提高农作物产量、质量的同时,有助于提高畜牧业的生产力发展水平。例如,通过控制饲料作物体内碳水化合物含量可提高畜牧业生产力;利用基因调控技术可以提高包括豆科作物在内一些作物的蛋白质含量,减少饲料作物中难消化的木质素含量等。达比等人已生产出一种转基因三叶草,可应用于澳大利亚绵羊牧场。该基因来自向日葵,经转基因的三叶草能制造富含氨基酸的蛋白质,该蛋白质经食物链进入绵羊体内,进而能提高产毛量。

  生物技术给人类带来的益处也包括在生态和环境两个方面。利用生物技术提高现有农业生态系统的生产力可以减低农业向原始的、自然、半自然生态系统扩张的要求,因此,它有助于有人类保存、保护地球上仅有的自然生态系统及其资源,有助于人们未来再利用其中的基因资源开发新的产品。

  生物技术已用于生产抗虫害、抗除草剂作物。正如前面所述,一些转基因棉花、玉米、大豆等具有抗虫害、抗除草剂的能力。1995年人们可以在市场上购买到转基因马铃薯,这种马铃薯能产生水晶蛋白,而水晶蛋白对科伦那多马铃薯甲虫有毒害作用。这些转基因作物能减少杀虫剂的用量,降低杀虫剂及其残留物对食物链、水体造成污染,从而有利于保护生态环境。

  在许多农业生产区,土壤氮素可利用量是制约农业生产力提高的一个重要因子。而一高科技农业生产区使用人造氮肥是以牺牲生态环境为代价的。制造氮肥要利用大量能源,据统计,英联邦农场平均投入的能源大约有50%来自肥料。由施用肥料而产生的温度气体(二氧气化碳、氮氧化合物等)不可避免地促进地球气候变暖。除此之外,农业土壤的氮素流失是水体富营养化的主要原因。

  同样,人们可以利用真菌来提高土壤养分的有效性。温莱指出:特定的真菌类能促进土壤养分的释放,从而促进作物生长;真菌也能通过分解有机物质(例如纤维素等)释放出糖类,促进固氮菌的生长。进一步提高土壤养分有效性的可能,包括获得转基因细菌和真菌,以进一步增强它们制造养分和释放土壤养分的能力。转基因作物的最终目标是使作物本身能够自行固氮,避免、减少使用人造肥料,从而减少对生态环境的破坏。这在目前尚不可能,但在将来却有望实现这个目标。

  从经济角度上讲,生物技术带来的不利并不明显,然而,它会引起发达国家与发展中国家贫富差距进一步扩大。因为,生物技术公司主要集中在发达国家,发达国家可以通过输出生物技术产品而获得利润。与此同时,发展中国家由于技术、及其产品还远没有被广泛接受。

  生物技术可能引起生产方式和人类健康的退变。这种情奖品可能会随着需要特定处理的转基因作物的出现而产生,特别是抗除草剂的转基因作物出现。农民必须从同一公司购买种子和除草剂,否则除草剂起不了作用。同样的问题也可能在需人造肥料的转基因作物上出现,这些转基因作物会取代传统的依靠有机肥的作物,后者在发展中国家是很普遍的,并且也有利于环境保护。生物技术在食品上的应用对发展中国家的农民也会造成许多困难。生物技术也会对人类的健康制造麻烦。近年来在英国已有这方面的报道。特别是当能引发人体过敏反应的基因转入农作物时,例如,坚果能引发人体过敏反应,若它的基因被导入其他作物,则有可能其他作物也会引起人体过敏。为了预防起见,转基因作物产品必须经免疫测定筛选后才能利用。

  生物技术也可能引发环境问题。人们利用生物技术生产出抗旱、耐盐、抗病虫害作物同时,也导致生物多样性遭受严重破坏,甚至导致一些物种灭绝。这一结果是由于生物技术促进农作物向它原本不适应的地域扩张而造成的。生物技术同样加速土壤侵蚀和沙漠化。农业,尤其是耕作农业的扩张会增加除草剂、杀虫剂、人造肥料的使用,农业中不断投入的能源促进全球变暖。与此同时,氮素生物化学循环的改变也加剧了水体的富营养化,直接影响人类和动植物的生存。

  生物芯片、生物传感器是利用固定在载体上的生物大分子与检测对象间的特异性地相互作用的原理做成的检测模块。载体上的生物大分子与检测对象相互作用的过程中发生的物理或化学变化现象转化成生物电信号,检测系统将电子信号放大,可得到与生物转感器或生物芯片相互作用的环境物质的相关信息。这类检测方法灵敏度高、针对性强、检测速率快,目前已有产品成功应用于环境监测领域,诸如生物需氧量生物传感器、微生物毒性生物传感器等。

  生物免疫检验是利用检验系统的免疫自我识别功能,对环境毒性物质进行抗原或抗体的特异反应而检测环境毒性物质。该方法灵敏度高、针对性强、操作方便、成本低,目前已广泛应用到环境污染物的实时监控领域。

  1975年美国加利福尼亚大学Ames教授建立Ames实验。该实验广泛应用于食品、化妆品的致突变性。方法适用于测试样品中的混合污染物,反映的是多种污染物的综合致突变效应,是一种较好的环境潜在突变物的预警手段。

  随着现代工业的发展,不可避免的会产生大量有机废气,如不经过处理直接排入大气层中,会产生严重的空气污染,最终危害人们的健康。有机废气的处理方法有物理法、化学法、生物法等,生物法是基于“双膜理论”发展而来的新技术,与传统有机废气处理方法相比,具有成本低、效率高、安全性好和无二次污染等优点,因此,应用生物处理技术净化有机废气逐步成为应用越来越广泛的有机废气治理新技术。生物法治理废气工艺有很多种,比如生物滤池法、生物滴滤法、生物洗涤法、生物吸附法等。生物法理有机废气包括气液转化阶段、生物吸附吸收阶段和生物降解阶段三个阶段。诸如,美国有公司利用微生物分解有机物的能力处理工业性恶臭气体,取得了满意的除臭效果,且无二次污染产生,德国的科学家利用生物滤池法处理含硫化氢气体,90%以上硫化氢得以去除。有机废气生物处理技术是一项新兴的新方法,不但成本低、能耗少,而且处理效率高。但是,应用生物方法处理有机废气也存在着不足之处。比如,生物法在处理低浓度有机废气时效果良好,处理高浓度有机废气的治理效果欠佳,生物过滤法所用填料的比表面积、孔隙率等直接影响有机废气的处理效果,高比表面积、高孔隙率的填料方面的研究和产品还很少,有待更深入的研究。

  为了提高常规活性污泥法的效能,通过提高系统微生物浓度或者投加生物强化材料成为生物治理技术发展的一个主要方向。主要强化方法有:(1)高浓度活性污泥法。通过培养颗粒污泥等方法,提高生物系统中污泥浓度,延长龄泥,从而促进对难分解物质的处理,提升污染物降解效能。高浓度活性污泥系统中有效微生物的数量是常规活性污泥法的3~5倍,从而大大降低了污泥负荷,提高系统污染物处理效果。日本有科学家采用该方法处理难分解的聚乙烯醇废水,取得显著效果。(2)化学生物絮凝法。它是20世纪80年代兴起的一种强化生物处理技术。是在常规活性污泥中加入氯化铁、聚合氯化铝、硫酸铁等混凝剂,形成生物铁或铝絮凝体活性污泥。这种污泥呈颗粒状,沉降性能好,可避免污泥膨胀现象,同时通过周期性排泥,除磷效果好。(3)生物活性炭法,该方法是美国杜邦公司在1972年提出的一种生物强化处理方法,用于处理化工废水,取得了很好的效果。该方法借助活性炭优良的吸附能力以及微生物氧化能力的协同增效作用,提升污染物去除效能。中国的张旭等利用生物活性炭工艺处理石油类污染地下水,发现该技术对石油类污染物的平均去除率为45.4%,同时提升了系统的脱氮效果。

  固定化微生物技术是20世纪70年展起来的。这种技术通过将微生物固载到一定的填料或载体上,提升系统中有效微生物的数量,同时可富集污泥龄较长的微生物,并且固、液分离效果好,减少占地面积,缩短水力停留时间。实践证明,固定化微生物技术的容积负荷可达常规活性污泥法的3~7倍,同时可取得50%以上的的脱氮效果。敬一兵等利用海藻酸钠与戊二醛进行交联作为微生物固定化载体处理味精废水,系统的COD去除率在70%以上,总氮去除率在60%以上。王增长等人利用聚集交联固定化细胞技术,将筛选的脱色菌固定在活性污泥絮体上,投加到“厌氧-好氧-生物滤池”系统中处理印染废水,发现处理后出水色度极低,可实现废水回用。固定化微生物技术可增加生物系统中的微生物浓度,提高污染物去除效率,是现有污水处理厂扩容、提升处理能力的一个切实可行的方法。

  投菌法就是筛选出对特定污染物有较强降解功能的微生物,直接或者放大培养后投加到生物系统中,可以使生物反应器中的特定细菌处于最佳状态,以提高特种污染物的处理效率。该方法对于毒性或者难降解废水处理效果好,经济成本低,但对于常规废水经济成本偏高。例如,中科院微生物研究所从上海石化厂分离出能够去除硫氰酸钠的混合菌种处理硫氰酸钠废水,可使得两段生化工艺的硫氰酸钠的去除负荷提高2~4倍,出水水质也得到了显著提升。

  序批式活性污泥法(SBR法)是按照进水、反应、沉淀、排放和闲置五个阶段周期运行,间歇进出水。SBR法将厌氧、好氧、沉淀等设施集成在一个反应器中,通过控制时间程序而完成连续式设施所达到的效果,一般会设计2套以上交替运行。该方法运行灵活,可以随时调整反应阶段,例如把反应段与进水段同时进行,也可以在进水期的同时曝气,各阶段运行时间亦可随时调整。例如,余宗莲等采用SBR工艺处理生物制药废水,在不额外投加氮、磷等营养物质情况下,当进水COD在3500mg/L以下、水力停留时间16h时,出水COD可以稳定在350mg/L以下。更重要的是,在处理过程中可根据水质水量的变化,灵活调整反应阶段,特别适应于水质水量变化较大的工业废水或分散式污水的处理。

  水体中氮、磷等营养元素过量时会造成藻类的大规模爆发,形成富营养化水体,导致水体功能下降,丧失原有生态功能。研究表明氮、磷等营养物质的过量是造成水体富营养化的关键因子,因此,研究废水中氮、磷的处理技术显得非常必要。生物脱氮技术主要是借助硝化细菌和反硝化细菌通过硝化和反硝化过程实现。朱淑琴等基于间歇式活性污泥法,通过硝化-反硝化过程脱氮,发现在硝化段停留时间7h,氨氮去除率达90%以上,反硝化阶段,以甲醇作为碳源,6h后反硝化率达95%以上。山西汾西矿业集团焦化厂采用A2/O工艺处理焦化废水,发现水解酸化可以改善碳源的生化性,NH+4-N去除率高于60%,COD去除率高于70%,产水可用作熄焦及洗煤补充水加以回用。生物除磷是利用聚磷菌在厌氧条件下释放磷,好氧条件下过量吸收磷来除去污水中磷的方法。目前,应用于工程实践的生物除磷技术有多个系统:Phostrip工艺、Phoredox工艺、Bardenpho系统、A/O系统、UCT工艺、改良氧化沟、SBR工艺等,这些工艺均有一定的除磷功能。

  城市规模扩大和经济发展导致生活垃圾快速增长和资源能源需求短缺,已成为世界各国城市发展普遍面临的棘手问题。发达国家从20世纪60-70年代开始重视对城市生活垃圾污染防治的研究,逐步形成了填埋、堆肥、焚烧和热解相结合的综合处理模式,80-90年代开始,德国、日本、美国、英国、新加坡等国家逐步引入“避免和减少垃圾产生”的减量化观念,从垃圾处理处置的末端治理向源头减量与循环利用方向转变。进入21世纪,随着科学技术的进步和人类环境意识的加强,过去的垃圾成了城市矿产资源,各国开始探寻城市发展中资源能源化解决方案。城市城市固体废弃物中有机物占40%以上,是宝贵的可利用资源。如通过生物技术将其转化为能源或者有机肥料,可以实现城市生活垃圾的资源化利用。因此,基于生物技术处理城市固体废弃物,从而获得能源或者优质有机肥是城市固体废弃物无害化、减量化、资源化的有效途径。由于我国城市固体废弃物资源能源化处理起步较晚,国外的一些成熟处理技术不能在国内直接应用,加上资金、技术等方面的短缺,需要加大在生活垃圾资源能源化方面的科研投入力度,同时跳出仅仅回收能源的思想束缚,寻求适合我国国情的其它功能化应用(如作为吸附材料或工农业原料)将更有意义。

  生物技术除了可应用在废水处理、废气净化、固体废弃物的处置以及环境污染的快速监测等领域,还可以应用在污泥处理与处置、农业环境保护以及场地修复等领域。由于农药、化肥等的大量使用已引起土壤、地下水、水系和海洋的严重污染,世界各个国家都积极制定了各类环境修复计划,其中生物修复技术得到了很高的重视。例如,欧洲的德国、丹麦、荷兰等国家非常重视生物修复技术,他们利用微生物分解有毒有害物质,把生物修复技术作为治理大面积区域污染的一种有价值的方法。美国也在积极推进生物修复技术的研究和应用,美国能源部组建了“生物修复行动委员会”来推进生物修复技术的研究和工程实施。